Liste des prix du Wrestling Observer Newsletter - Prix actuels - Prix de catégorie B

Download in Excel, CSV or JSON

Structured data parsed from Wikipedia. Prix de catégorie B Pour les catégories de 'classe B', considérées comme catégories secondaires, chaque votant donne une seule proposition. Le gagnant de la catégorie est celui qui a été proposé le plus de fois. Most Disgusting Promotional Tactic Most Disgusting Promotional Tactic Récompense un angle, une storyline, une rivalité ou tout acte commis par une promotion de catch qui se distingue par son aspect choquant, de mauvais goût ou sensationnaliste. Worst Major Show Worst Major Show Récompense le plus mauvais show de catch ou de MMA d’importance (Pay Per Views ou shows spéciaux, les shows « ordinaires » ou émissions hebdomadaires ne sont pas éligibles). Best Wrestling Maneuver Best Wrestling Maneuver Récompense la prise de catch régulière préférée des votants. Worst Television Show Worst Television Show Récompense la pire émission de télévision hebdomadaire de catch ou de MMA. Worst Worked Match of the Year Worst Worked Match of the Year Récompense le plus mauvais combat de catch de l'année. Mexico 9 août Orlando 17 mars Orlando 2 avril Riyad 2 novembre Worst Feud of the Year Worst Feud of the Year Récompense la plus mauvaise rivalité de l’année, réelle ou scénarisée, en catch comme en MMA. Worst Promotion of the Year Worst Promotion of the Year Récompense la pire organisation de l’année, soit celle qui a proposé les pires shows de manière régulière. La catégorie est ouverte aux promotions de catch comme à celles de MMA. Best Booker Best Booker Récompense le meilleur booker ou scénariste en catch ou matchmaker (celui qui arrange les combats) en MMA. Promoter of the Year Promoter of the Year Récompense le meilleur promoteur de l’année. Best Gimmick Best Gimmick Ce prix récompense le meilleur personnage de l'année au catch. straight edge Worst Gimmick Worst Gimmick Ce prix récompense le pire personnage de l'année, généralement le plus ridicule, au catch. Best Pro Wrestling Book Best Pro Wrestling Book Récompense le meilleur livre parlant de catch sorti pendant l’année. The Death of WCW Tangled Ropes Hitman: My Life in the Cartoon World of Pro Wrestling Gorgeous George: The Bad Boy Wrestler Who Created American Pop Culture The Midnight Express 25th Anniversary Scrapbook Countdown to Lockdown Undisputed : How to Become the World Champion in 1,372 Easy Steps Shooters: The Toughest Men in Professional Wrestling Mad Dogs, Midgets and Screw Jobs : The Untold Story of How Montreal Shaped the World of Wrestling The Death of WCW 10th Anniversary Edition Yes!: My Improbable Journey to the Main Event of Wrestlemania Ali vs. Inoki Crazy Like a Fox: The Definitive Chronicle of Brian Pillman 20 Years Later Eggshells: Pro Wrestling in the Tokyo Dome Best Pro Wrestling DVD Best Pro Wrestling DVD Récompense le meilleur DVD de catch (documentaire et/ou compilation uniquement) sorti pendant l’année.

Data Source : WIKIPEDIA
Number of Data columns : 3 Number of Data rows : 14
Categories : economy, demography, politics, knowledge

Dataset

Data row number Année Gagnant Promotion(s)

Download the dataset to see the full list of 14 entries

Data Columns

Name Description Data Type
Année integer
Gagnant text
Promotion(s) text

Other datasets published on Basedig

List of trigonometric identities - Power-reduction formulae

From WIKIPEDIA

Structured data parsed from Wikipedia. Power reduction formulae Obtained by solving the second and third versions of the cosine double angle formula. sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 {displaystyle sin ^{2}theta ={frac {1 cos(2theta )}{2}}} sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 {displaystyle sin ^{2}theta ={frac {1 cos(2theta )}{2}}} sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 {displaystyle sin ^{2}theta ={frac {1 cos(2theta )}{2}}} sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 {displaystyle sin ^{2}theta ={frac {1 cos(2theta )}{2}}} sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 sin 2 sin 2 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 1 − cos ⁡ ( 2 θ ) 2 1 − cos ⁡ ( 2 θ ) 1 − cos ⁡ ( 2 θ ) 2 {displaystyle sin ^{2}theta ={frac {1 cos(2theta )}{2}}} cos 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 {displaystyle cos ^{2}theta ={frac {1+cos(2theta )}{2}}} cos 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 {displaystyle cos ^{2}theta ={frac {1+cos(2theta )}{2}}} cos 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 {displaystyle cos ^{2}theta ={frac {1+cos(2theta )}{2}}} cos 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 {displaystyle cos ^{2}theta ={frac {1+cos(2theta )}{2}}} cos 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 cos 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 cos 2 cos 2 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 1 + cos ⁡ ( 2 θ ) 2 1 + cos ⁡ ( 2 θ ) 1 + cos ⁡ ( 2 θ ) 2 {displaystyle cos ^{2}theta ={frac {1+cos(2theta )}{2}}} sin 2 ⁡ θ cos 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{2}theta cos ^{2}theta ={frac {1 cos(4theta )}{8}}} sin 2 ⁡ θ cos 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{2}theta cos ^{2}theta ={frac {1 cos(4theta )}{8}}} sin 2 ⁡ θ cos 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{2}theta cos ^{2}theta ={frac {1 cos(4theta )}{8}}} sin 2 ⁡ θ cos 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{2}theta cos ^{2}theta ={frac {1 cos(4theta )}{8}}} sin 2 ⁡ θ cos 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 sin 2 ⁡ θ cos 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 sin 2 sin 2 2 ⁡ θ cos 2 cos 2 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 1 − cos ⁡ ( 4 θ ) 8 1 − cos ⁡ ( 4 θ ) 1 − cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{2}theta cos ^{2}theta ={frac {1 cos(4theta )}{8}}} sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {displaystyle sin ^{3}theta ={frac {3sin theta sin(3theta )}{4}}} sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {displaystyle sin ^{3}theta ={frac {3sin theta sin(3theta )}{4}}} sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {displaystyle sin ^{3}theta ={frac {3sin theta sin(3theta )}{4}}} sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {displaystyle sin ^{3}theta ={frac {3sin theta sin(3theta )}{4}}} sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 sin 3 sin 3 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {displaystyle sin ^{3}theta ={frac {3sin theta sin(3theta )}{4}}} cos 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 {displaystyle cos ^{3}theta ={frac {3cos theta +cos(3theta )}{4}}} cos 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 {displaystyle cos ^{3}theta ={frac {3cos theta +cos(3theta )}{4}}} cos 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 {displaystyle cos ^{3}theta ={frac {3cos theta +cos(3theta )}{4}}} cos 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 {displaystyle cos ^{3}theta ={frac {3cos theta +cos(3theta )}{4}}} cos 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 cos 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 cos 3 cos 3 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 {displaystyle cos ^{3}theta ={frac {3cos theta +cos(3theta )}{4}}} sin 3 ⁡ θ cos 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 {displaystyle sin ^{3}theta cos ^{3}theta ={frac {3sin(2theta ) sin(6theta )}{32}}} sin 3 ⁡ θ cos 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 {displaystyle sin ^{3}theta cos ^{3}theta ={frac {3sin(2theta ) sin(6theta )}{32}}} sin 3 ⁡ θ cos 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 {displaystyle sin ^{3}theta cos ^{3}theta ={frac {3sin(2theta ) sin(6theta )}{32}}} sin 3 ⁡ θ cos 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 {displaystyle sin ^{3}theta cos ^{3}theta ={frac {3sin(2theta ) sin(6theta )}{32}}} sin 3 ⁡ θ cos 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 sin 3 ⁡ θ cos 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 sin 3 sin 3 3 ⁡ θ cos 3 cos 3 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 {displaystyle sin ^{3}theta cos ^{3}theta ={frac {3sin(2theta ) sin(6theta )}{32}}} sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{4}theta ={frac {3 4cos(2theta )+cos(4theta )}{8}}} sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{4}theta ={frac {3 4cos(2theta )+cos(4theta )}{8}}} sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{4}theta ={frac {3 4cos(2theta )+cos(4theta )}{8}}} sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{4}theta ={frac {3 4cos(2theta )+cos(4theta )}{8}}} sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 sin 4 sin 4 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle sin ^{4}theta ={frac {3 4cos(2theta )+cos(4theta )}{8}}} cos 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle cos ^{4}theta ={frac {3+4cos(2theta )+cos(4theta )}{8}}} cos 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle cos ^{4}theta ={frac {3+4cos(2theta )+cos(4theta )}{8}}} cos 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle cos ^{4}theta ={frac {3+4cos(2theta )+cos(4theta )}{8}}} cos 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle cos ^{4}theta ={frac {3+4cos(2theta )+cos(4theta )}{8}}} cos 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 cos 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 cos 4 cos 4 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {displaystyle cos ^{4}theta ={frac {3+4cos(2theta )+cos(4theta )}{8}}} sin 4 ⁡ θ cos 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 {displaystyle sin ^{4}theta cos ^{4}theta ={frac {3 4cos(4theta )+cos(8theta )}{128}}} sin 4 ⁡ θ cos 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 {displaystyle sin ^{4}theta cos ^{4}theta ={frac {3 4cos(4theta )+cos(8theta )}{128}}} sin 4 ⁡ θ cos 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 {displaystyle sin ^{4}theta cos ^{4}theta ={frac {3 4cos(4theta )+cos(8theta )}{128}}} sin 4 ⁡ θ cos 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 {displaystyle sin ^{4}theta cos ^{4}theta ={frac {3 4cos(4theta )+cos(8theta )}{128}}} sin 4 ⁡ θ cos 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 sin 4 ⁡ θ cos 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 sin 4 sin 4 4 ⁡ θ cos 4 cos 4 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 {displaystyle sin ^{4}theta cos ^{4}theta ={frac {3 4cos(4theta )+cos(8theta )}{128}}} sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {displaystyle sin ^{5}theta ={frac {10sin theta 5sin(3theta )+sin(5theta )}{16}}} sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {displaystyle sin ^{5}theta ={frac {10sin theta 5sin(3theta )+sin(5theta )}{16}}} sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {displaystyle sin ^{5}theta ={frac {10sin theta 5sin(3theta )+sin(5theta )}{16}}} sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {displaystyle sin ^{5}theta ={frac {10sin theta 5sin(3theta )+sin(5theta )}{16}}} sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 sin 5 sin 5 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {displaystyle sin ^{5}theta ={frac {10sin theta 5sin(3theta )+sin(5theta )}{16}}} cos 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 {displaystyle cos ^{5}theta ={frac {10cos theta +5cos(3theta )+cos(5theta )}{16}}} cos 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 {displaystyle cos ^{5}theta ={frac {10cos theta +5cos(3theta )+cos(5theta )}{16}}} cos 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 {displaystyle cos ^{5}theta ={frac {10cos theta +5cos(3theta )+cos(5theta )}{16}}} cos 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 {displaystyle cos ^{5}theta ={frac {10cos theta +5cos(3theta )+cos(5theta )}{16}}} cos 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 cos 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 cos 5 cos 5 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 {displaystyle cos ^{5}theta ={frac {10cos theta +5cos(3theta )+cos(5theta )}{16}}} sin 5 ⁡ θ cos 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 {displaystyle sin ^{5}theta cos ^{5}theta ={frac {10sin(2theta ) 5sin(6theta )+sin(10theta )}{512}}} sin 5 ⁡ θ cos 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 {displaystyle sin ^{5}theta cos ^{5}theta ={frac {10sin(2theta ) 5sin(6theta )+sin(10theta )}{512}}} sin 5 ⁡ θ cos 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 {displaystyle sin ^{5}theta cos ^{5}theta ={frac {10sin(2theta ) 5sin(6theta )+sin(10theta )}{512}}} sin 5 ⁡ θ cos 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 {displaystyle sin ^{5}theta cos ^{5}theta ={frac {10sin(2theta ) 5sin(6theta )+sin(10theta )}{512}}} sin 5 ⁡ θ cos 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 sin 5 ⁡ θ cos 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 sin 5 sin 5 5 ⁡ θ cos 5 cos 5 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 {displaystyle sin ^{5}theta cos ^{5}theta ={frac {10sin(2theta ) 5sin(6theta )+sin(10theta )}{512}}} and in general terms of powers of sin θ or cos θ the following is true, and can be deduced using De Moivre's formula, Euler's formula and the binomial theorem. sin θ θ cos θ θ citation needed citation needed

formulae, reduction, power, th, cos

Help:IPA/Latin

From WIKIPEDIA

Structured data parsed from Wikipedia. < Help:IPA This is the pronunciation key for IPA transcriptions of Latin on Wikipedia. .mw parser output .module shortcutboxplain{float:right;border:1px solid #aaa;background:#fff;margin:0 0 0 1em;padding:.3em .6em .2em .6em;text align:center;font size:85%;font weight:bold}.mw parser output .module shortcutlist{display:inline block;border bottom:1px solid #aaa;margin bottom:.2em;font weight:normal}.mw parser output .module shortcutanchordiv{position:relative;top: 3em} H:IPA LA The charts below show the way in which the International Phonetic Alphabet (IPA) represents Classical Latin and Ecclesiastical Latin pronunciations in Wikipedia articles. For a guide to adding IPA characters to Wikipedia articles, see {{IPA la}} and Wikipedia:Manual of Style/Pronunciation § Entering IPA characters. See Latin spelling and pronunciation and Latin regional pronunciation for a more thorough look at the sounds of Latin. b b b b b d d d d d dz dz z z dds dʒ dʒ g g g f f f f f ɡ ɡ g g g h h h h h h j j i i y k k c, k c c kʰ kʰ ch ch c kʷ kʷ qu qu qu kᶣ kᶣ qu cuisine cu l l l l l ɫ ɫ l l ll m m m m m n n n n n ŋ ŋ n ng g g ɲ ɲ gn gn ni p p p p p pʰ pʰ ph ph p r r r r s s s s s ʃ ʃ sc sc sh t t t t t tʰ tʰ th th t ts ts t t ts tʃ tʃ c c ch w w u u w v v v v z z z z z s s

ipa, latin, help, wikipedia, g

2000–01 Pittsburgh Penguins season - Awards and records - Awards

From WIKIPEDIA

Structured data parsed from Wikipedia. Awards

awards, and, pittsburgh, 01, season